INTRODUCING VITRIMER COMPOSITES: Unlocking the **circular economy** for composite materials

MALLINDA

info@mallinda.com

Vitrimers – New Polymer Class

MALLINDA

VITRIMERS ARE:

- A new class of resin, only recently discovered in academic polymer science.
- 100% Recyclable after cure/end of life.
- Covalent network polymers with high degree of crosslinking (similar in this way to thermosets).
- Reprocessable after cure when heated above the vitrimer transition temperature, due to exchange of chemical crosslinks
- Capable of diverse mechanical properties from elastomers to high modulus resins
- Applicable to moderately high temperature applications (up to 180C).

VITRIMERS ARE NOT:

- Thermoplastics, since vitrimers are crosslinked.
- Thermosets, since vitrimers are reprocessable after cure.

Traditional Epoxy Resins

Bonding between layers gives thermoset strength.

Mallinda's technology has **exchangeable bonds** that allows bonding across the interface, even after curing.

Thermoset Composites Vitrimer Composites Thermoplastic Composites

VITRIMERS: INTRINSICALLY RECYCLABLE

STEP 1 Mold

MALLINDA

Due to the reversible crosslink chemistry in vitrimers, cured vitrimer resins can be depolymerized using chemical precursors to the resin itself. This enables circular recovery and reuse of both resin and fiber.

6

THERMOSET LEVEL STRENGTH

	VITRIMAX T100	VITRIMAX T130	Hexcel Snapcure
Tensile Modulus (GPa)	103	114	118
Ultimate Tensile (GPa)	0.91	1.72	2.2
Flexural modulus (GPa)	50	124	114
Ultimate shear (MPa)	45	70	89
Cured Resin Density (gcm ⁻¹)	1.06	1.06	1.3
Tg (°C)	80	130	125
In-mold weld cycle (pre-cured)	30 s-5 min @100C	30 s-5 min @ 180 C	N/A
In-mold Cure cycle	40 min (20 min @160 C)	50 min (15 min @ 180 C)	47 min (2 min isotherm 150C)

The highly crosslinked nature of vitrimers means they exhibit similar mechanical properties to thermoset composites. However, vitrimer composites can be reprocessed after cure. This means that in-mold dwell times can be reduced significantly when compression forming pre-cured vitrimer composites

THERMOPLASTIC-LIKE PROCESSING

Vitrimer-Enabled High Throughput FRC Compression Molding

Vitrimer composite formats

Vitrimer resins are versatile and can be used to replace traditional thermoset resins in some applications, and can be used in place of thermoplastic composites in other applications.

THERMOSET COMPOSITE PROCESSES

Market Snapshot

Novel Features

- Pre-cured prepreg for infinite shelf life and improved automation
- Circularly recyclable- both chemical and mechanical recycling
- Post cure processing: Composite Welding
- Post cure processing: Reshaping above Tg

Traditional Processing $\boldsymbol{\epsilon}$ Performance

- Two-part resin system with tunable viscosity, etc.
- Thermoset Mechanical properties
- B-staged for in-mold cure (if desired)
- Compatible with traditional: prepregging, pultrusion, additive tapes, RTM*

FORM THE FUTURE.